
1 9 8 8

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER
THE UNIVERSITY OF ALABAMA

8%$%B - Q 8impCe anteractive auk Editor for NWBES .

Prepared by: Alex Bykat

Academic Rank: Profess or

Institution:

Depart men t :

NASNMSFC:
Laboratory:

Division:
Branch:

University of Tennessee at
Chattanooga

Center of Excellence for Computer
Applications

Inforination and Electronic
Systems
Electrical
Electric Power Branch

MSFC Colleague: David J. Weeks

Date: August 8, 1988

Contract No.:

IV

NGT 0 1-002-099
The University of Alabama

8'7!$UZ - a Simple LSltateractitvz Bulk Bditor for NZCBES .

Alex Bykat

Center of Excellence for Computer Applications

University of Tennessee,

Chattanooga, TN 37403

ABSTRACT

To support evolution of domain expertise, and its representa-
tion in an expert system's knowledge base, a user-friendly rule base
editor is mandatory. NICBES, a prototype of an expert system for the
Hubble Space Telescope power storage management system, does not
provide such an editor. In the following, we present a description of
SIRE - a Simple Interactive Rule Base Editor for NICBES.

SIRE provides a consistent internal representation of the
NICBES knowledge base. It supports knowledge presentation and
provides a user-friendly and code language independent medium for
rule addition and modification. SIRE is integrated with NICBES via an
interface module. This module provides translation of the internal
representation to Prolog-type rules (Horn clauses), latter rule
assertion, and a simple mechanism for rule selection for it's Prolog
'inference engine'.

IV - i

A c k n o w l e d g e m e n t s .

1 would like to express my appreciation of the hospitality
extended during my last two summers spent at Marshall Space Flight
Center. I have enjoyed and benefitted from participation in the
Summer Fellowship Program. Much of this is due to the efforts of
the program coordinators, Mrs. E. Cothran (MSFC) and Dr. M. Freeman
(The University of Alabama).

Working in the Electric Power Branch was an enjoyable
experience. This was due in particular, to Mr. David J . Weeks'
hospitality, warm reception and friendly guidance through the maze
of MSFC offices. Thank you Dave! My thanks go also to Dr. G.R.
Wallace for both, putting me in touch with Dave and for supporting
our cooperation, and to Mr. J.L. Miller, Mr. W.G. Shields and Mr. J.R.
Lanier for supporting my stay in their division.

IV - ii

Introduct ion.

A prototype of NICBES -- NIckel Cadmium Battery Expert Systems --
is currently operational and under testing on the HST test bed. The
prototype is written as two separate subsystems: the data handler,
and the diagnosis system.

The data handler subsystem is written in Microsoft C language. Its
main function is to receive telemetry data from the test bed, and to
'massage' this data into a form suitable for input to the diagnosis
system.

The diagnosis subsystem is written in Arity Prolog language. Its main
function is to take the data prepared by the data handler, and
evaluate this data to discover any exception situations that might be
indicated. In particular, the diagnosis tries to evaluate the state of
the batteries (as indicated by the data) for possible malfunctions
(charge leakages, overheating, etc), and for maintenance operations
(recharging, etc).

The diagnosis subsystem displays its findings in terms of graphs
indicating various 'trends' of batteries performance, as well as alarm
messages (when they are necessary). The graphical operations
needed for the trend displays were written in Microsoft C.

The NICBES prototype performs well, but a number of problems have
been exhibited during its test runs. In addition, the experience with
the prototype has provided insights which allowed to identify some
needed additions and improvements of the system. Some of these
problems and needed improvements are listed below.

NICBES problems:

1 . Battery plots show incorrect data points. This apparently occurs
a. consistently in the last data point, and
b. intermittently in other positions.

IV - 1

The first case is probably due to NICBES incorrectly handling the last
data point (interrupted orbit?).

The second case may be due to bad data points.
the origin of the bad data has to be traced.
exist:
A.
B. NICBES data handler gets confused because of garbled header

If this is the case
A number of possibilities

NICBES data handler garbles the data.

in the data package.

The data handler receives transmissior, once every
minute. Each transmission lasts precisely six seconds. An orbit
telemetry data consists of 96 such transmission bursts, with
each burst consisting of a data header followed by 370
telemetry values. A data header consists of a special start-data
character -- the character A -- and is followed by nine data
items, which identify the history of each data burst.

To receive the transmission, the data handler looks for
this special start-data character. If the character A is not
recognized, the data is rejected as noise. When the start data
character is recognized, the data handler starts collecting the
data and stores it as orbit data files, for a subsequent use by
NICBES.

Herein lies a possible source of trouble -- here is a
situation where two wrongs can make a right! A misread start-
data-character will cause valid data (and in particular the
header) to be rejected. A subsequent data item, misread as a
start-data-character, may cause acceptance of the . remaining
part of a transmission as a complete telemetry. Of course, this
latter data will be out of phase, and may very well cause bad
data points to appear on plots.

To verify this scenario, a software filter should be
written. This filter will be applied to (suspect) archived
telemetry data files to detect short transmissions. Once the
relationship between these faulty files and the bad data points
is verified, the filter can be integrated with the data handler, to
reject such faulty transmissions.

IV - 2

C

2.

Telemetry data contains bad values. This case should raise an
alarm prior to transmission of data to NICBES. Since no alarm is
raised there are two 'sub-possibilities':
C1. alarm does not work (eg. it does not recognize invalid

C2. alarm is not recognized by NICBES
data), or

NICBES evaluates batteries performance from data collected
over 12 orbits only.

Battery performance trends should be evaluated over a large
number of orbits. However, increase in the number of orbits is
currently infeasible due to the hardware and software environment
of NICBES prototype.

NICBES improvements:

1.

2.

Presentation of trends over a long period of time. This
requires ability to handle more than the 12 orbits in the
current version. The number of orbits to be aimed for is 400 to
500.

Before we can look at a technical solution to this
problem, we have to change NICBES environment. The 12
orbits limitation is due to the NICBES hardware
environment which consists of an IBM AT with 640 KB
memory and 20 MB hard disk running under DOS.

Knowledge Base Rule Editor. It is desired to have a user
friendly facility for display and modification of NICBES rules.
Currently, to change or even to display a rule, Prolog
programming knowledge is required.

This should be doable over the Summer, provided the
NICBES has a well defined knowledge representation. If
this latter holds, at least a rudimentary Rule Editor can be
build incorporating functions such as

IV - 3

a) display a rule,
b) delete a rule
c) add a rule

3 . Graphic representation of battery voltage uses a 'flexible
spread' range and computed scale within that range. This
makes visual recognition and comparison rather difficult for a
human eye.

The scale have the same range, those the origin point of
the scale can be adjusted to represent the (minimal) data
value.

4. Multitasking is necessary to continue data collection when
NICBES consultation is in progress.

Desqview was suggested as a quick fix to add the
multitasking capability. However, it is my opinion (based
on my current and superficial knowledge of DV) that this
software will not provide multitasking within one
package. I have to investigate that further, but I believe
that DV provides 'multiple window multitasking' ie. time
sharing of applications, not multi tasking within
application.

5 . Printout of messages w
collection.

This is related to the

thout interrupting NICBES data

above requirement.

The above list of needed improvements is arranged in order of
priority. However, not all of these improvements can be tackled with
currently avai lable hardware configuration. I n particular,
presentation of trends over a long period of time (improvement 1)
requires a large main storage capacity, certainly larger than the 640
Kbyte available on the currently available NICBES computer (IBM
PC/AT). Similarly, the multitasking capability (improvement 4) is
not available for the IBM PC/AT. Thus, these improvements will be

IV - 4

relegated to implementation of NICBES on an I80386 class of
computer .

The
for the cufen t NICBES prototype.
described in the subsequent pages of this report.

requirement for a knowledge-base rule editor can he developed
It is this new subsystem that is

IV - 5

Objectives.

The main objective of the following work is to provide the
NICBES prototype with a subsystem which supports acquisition and
modification of nickel-cadmium battery management rules. This
subsystem will be used by the (human) battery management experts
to extend and to formalize their experience (with the said batteries)
into a knowledge base. This expert knowledge base is captured in
the form of production rules, and is used by the (software) expert
system -- NICBES -- in diagnosis of battery Performance.

To achieve this objective, it was necessary to write a software
system -- SIRE -- which provides:

1. Internal representation of knowledge in a consistent manner.
2. Capability to display the captured domain knowledge.
3. Capability to add new domain knowledge.
4. Capability to modify captured knowledge in a programming

code independent manner.
5 . Interface to NICBES to integrate the subsystem and to avail the

knowledge base for subsequent diagnosis of battery
performance.

IV - 6

SflRE - Simple Interactive Rule Ed i to r .

NICBES was intended to prove the capability of expert system
technology in (eventually) autonomous management of the power
supply system for the Hubble Space Telescope. Consequently, and as
this technology dictates, NICBES has two main components:

1) domain knowledge, and
2) mechanism to manipulate this knowledge.

Building the domain knowledge demands consideration of two
aspects:

1) knowledge acquisition and
2) knowledge represent ation.

Of course, the latter is influenced by the fashion in which the
knowledge manipulation mechanism will use it.

Evolution and changes in domain expertise, mandate from an expert
system provision for a programming-language independent rule
editing. Current version of NICBES, does not support such capability.
The rules of NICBES are simply programmed in Prolog, demanding
familiarity with Prolog to effect rule changes. Since this essentially
requires a new and highly technical skill from the domain experts,
it is not a satisfactory situation. Indeed, to change a rule, in addition
to knowing Prolog, the domain expert would have to be familiar with
NICBES internal code structure. To alleviate this situation we shall
implement a 'friendly' rule editor -- SIRE. Figure 1 shows the SIRE
environment within NICBES.

IV - 7

I N I CBES I
1 . Diaanose I I

.

Fig.1. SIRE environment

Rule representation.

As stated previously, current version of NICBES does not represent
rules in a consistent and well defined way. The rules are simply
programmed in Prolog, with structure depending on each individual
rule type. The following is an example of a NICBES programmed rule:

advice(Bat,l):-
write($** ADVICE ON RECONDITIONING BATTERY: **$), NL,
get one(Trend1 ,Trend:!,Trend3,Trend4,TrendS,Bat),
recond(Trend 1 ,Trend2,Trend3 ,Trend4,TrendS).

get - one(Trend1 ,Trend:!,Trend3,Trend4,TrendS,Bat):-
......

recond(T1 ,T2,T3,T4,T5):-
write($EOD voltage trend is$), write(Tl), nl,
write($In-charge voltage trend is$), write(T2), nl,
write($Recharge ratio trend is$), write(T3), nl,
write($EOD divergence trend is$), write(T4), nl,

IV - 8

write($In-charge divergence trend is$), write(T5), nl,
tell - 1 (T 1 ,T2,T3 ,T4,T5).

tell - l(strong1y down, - - - , , ,strongly up):-
writ e ($R%c o nd it i o ni ng
capacity . $) , nl .

a dvi s e d t o c or r e c t fa i 1 i n g

In the above, the adv ice predicate invokes the diagnostic evaluation
of battery Bat performance data. The second argument in advice
indicates a choice of the type of diagnostics to be performed.
(Currently, there are three choices possible: reconditioning, charging
regime, and workload.)

The get one predicate uses orbit telemetry data files to calculate the
battery Bat trends. These trend values are then "fuzzed" into various
intervals, and the latter are given symbolic names such as:
strongly down, down, up, strongly up . Note that get one calculates
variables- which are then used as initial parameters for the diagnostic
rules.

The recond predicate takes these symbolic trend names, and displays
their values as an overall battery assessment. Thus, rerond merely
reports the trend values, and then passes control to tell - I .

Finally, the t e l l I predicate uses the appropriate symbolic trend
values to display-NICBES recommendations in English. (Although not
shown above, there are altogether 1 1 different recommendations
that can be produced by tell I . of course, different recommendations
are produced in response to-different symbolic trend values.)

To support SIRE functions, the rules (such as above) have to be
structured and represented consistently. The following describes the
knowledge representation that shall be adopted for SIRE (and hence
NICBES) rule representation.

The internal representation of NICBES rules will consist of the five
parts:

1) rule category
2) rule number
3) parameter initialization

IV - 9

4) premise specification
5) conclusion specification.

These five parts will be presented as five arguments of the PROLOG
predicate rule/5, eg:

rule(Category, Number,
params(Par - List), premis(Pre - List), conclude(Con - List)).

Note that the rule category allows us to structure the rule base into
rule groups corresponding to each category. This allows increase in
search efficiency during the inference process. Within each category,
a rule is identified via its number. Globally, each rule will be
uniquely identified by the tupple (rule category, rule number).

1) Rule category names are created by the user. Current NICBES
rule base will be divided into categories such as reconditioning,
charge and load. Other rule categories can be established by the SIRE
user.

2) Rule number will be used to identify a rule within a rule
category. Rule numbers must be unique within a category, though
they may be repeated across the categories.

3) Parameter initialization list Par List will consist gf elements,
each in the form of a valid Prolog term. these terms will
represent assignment of a value to a parameter which is used
subsequently in the rule body. The assignments are of the form:

w h e r e

Typically,

Parameter:= Value

Parameter -
specifies the variable to be used in the rule. This is the
actual slot that will contain the the parameter's value.

specifies the initialization procedure for the parameter.
The value can be of three types:

Value -

a s k -
specifies that a value for this parameter should be
asked for interactively from the SIRE user.

IV - 10

get trend (Type,Bat),
g e t-ave - rag e (Typ e ,Bat) -

specifies that the function be evaluated and its
return value be assigned to the parameter.

specifies that < o t h e r > be assigned as entered to the
parameter's value.

<other> -

4) Premise specification list Pre List will consist of elements,
each of which is a Prolog term. The terms specified in the list,
combined with the AND operator (Prolog's comma) will constitute
the antecedent of the rule.

5) Conclusion specification list Con List will consist of elements
of the same form as those in the premise specification list. The
terms in Con - List will be executed subject to satisfaction of the
rule's premises.

Rule interpretation.

The following is an example of a NICBES rule, statec in its (new)
internal representation. This internal representation is followed by
it's English interpretation.

a
ru le (recondition,

1,
params([

$uses(B at)$,
$EOD VOLTAGE TREND:=get trend(eod - voltage,Bat)$,

ge t-trend(i n c - harge - divergence, B at) $I) ,

$EOD VOLTAGE TREND = down$,
$IN CHARGE - DIVERGENCE = strongly - up$]),

$ writ e('r ec o ndi t io ning is advised')])) .

$IN CHARGE DIVERGENCE TREND:=
premis(r

conclude([

IV - 11

English translation:

Parameter initialization:
Get the global value Bat
Eval late EOD VOLTAGE TREND.
Evalliate IN - Ck4RGE - DIVERGENCE - TREND.

The rule:
If

EOD VOLTAGE-TREND is down and
I ~ J CHARGE - DIVERGENCE - TREND is strongly - UP

The],-
write: reconditioning is advised.

Note that the elements of the three rule parts are specified as Prolog
strings. Thi; is necessary due to Arity Prolog's failure to preserve
symbolic names of variables. In Arity Prolog implementation,
variable's syinbolic name is replaced with a coded name. Although
this saves ;ome internal storage, information conveyed by the
symbolic name (so vital to program's documentation) is lost at run
time. (This is particularly bothersome in debugging stage.)

SIRE capabilities.

SIRE capabilities are accessed via two level menu system. The
selections from the two levels are combined providing an (almost)
Cartesian product of choices, as indicated in the table below:

IV - 12

First Level Menu

show delete add change statistics print quit
I

<category>

I I I I I I I
I I I I I

X X X X X X X

class l x l x l I l x l x l X I

all l x l x l

SIRE functions

Note that <category> will be actually presented as a list of category
names, eg: recondition, charge, load, etc.

SIRE design.

SIRE is
1 .
2.
3.
4.
5 .
6 .

written in Arity Prolog Version 4.
menu module,
rule base module,
editor functions module,
rule interface module,
on-line help module, and
SIRE control module.

The editor consists of

Menu module.

The menu module consists of SIRE menu definitions. These are
statements using the Arity Prolog Screen Toolbox. The menu
definitions are kept in file MENUS.AR1 which is consulted by the
SIRE control module.

As stated, SIRE capabilities are accessed via two level menu system.
The first level affords selection of requests for NICBES rule-
manipulation functions such as:

IV - 13

show, delete, add, change, save, statistics, help,
print, quit.

Selection of any option (other than the quit option) will result in
display of a second level menu. The second menu level allows
selection of NICBES rules to be manipulated. The choices provided in
the second menu level are:

<category>, rule, class, all, quit.

Here, <category> represents a list of names of rule categories that
actually exist currently in the rule base. The <category> list of names
in the menu is updated dynamically, so that it can be looked at as a
dynamic test for rule class changes.

Rule base module.

Thc: rule base module contains the internal representation of NICBES
diaznostic rules. The syntax of the internal representation is quite
simple:

RULE

CATEGORY ::= cuser defined name>
NUMBER :: = <integer>
PARAMETER ::= params(TERM)
PREMISE ::= premis(TERM I
CONCUTSION ::= conclude(TERhI)

::= ule(CATEGORY, NUMBER, PARAMETER, PREMISE,
CONCLUSION)

w h x e TERM is a string written in syntax as defined by the Arity
Prctlog term definition. Generall) speaking, this means a syntax
defined by

TERM ::= <operator> (ARG - LIST)
TERM ::= <atom> I <nun ber> I <string> I <variable>
ARG - LIST ::= TERM
ARG - LIST ::= ARG - LIST,TEIM

IV - 14

Note that, as is usual in Prolog, the operators can be written in prefix
or infix notation as appropriate.

Rule interface module.

The interface module is provided to integrate the new internal rule
representation with the NICBES diagnostic system. The main function
of this module is tc translate the internal rule representation into a
Prolog clause form. This 'executable' form is then supplied to NICBES
inference mechanism for evaluation.

TI e interface module performs as a three stage module. In the first
stlge the internal form of SIRE rule is retrieved and then translated
into the Prolog expression form. It is at this stage that the syntax of
thc rule is checked -- a rule written in valid syntax is one that
conforms to the syntax of a Prolog expression. If the rule is found to
be syntactically invalid, a suitable message will be output, and the
translation of the rule is abandoned. The user can then use SIRE to
col-rect the rule.

In the second stage a name for the rule, based on the rule's CLASS
and NUMBER is generated. The name is then prefixed to the rules
body, and the valid clause is then asserted (added) as a rule. Thus a
rule now appears as a valid Prolog clause. While asserting such a
rule, any existing rule with the same name is retracted (erased).
Translation and assertion of the rules into NICBES rule base is done
only once -- the first time a consultation for the required class is
requested. This minimizes the internal representation gverheads due
to the translation process.

In the third stage the Prolog inference mechanism is invoked with
the asserted 1-ules supplied as the rule base. This process consists,
essentially, 01' evaluation of rules in the order of their assertion

IV - 15

sequence. If a rule :,ucceeds, the result is exhibited to the user; if the
rule fails, another rLle is extracted 'rom the rule base and tested.

While a rule is evaluated, this mDdule retrieves the global values
indicated in the parameter initi;tlization part and makes them
available to the rule. In addition, the 'basic NICBES operations' are
evaluated (as indicated) to provide the initial values to the rule
variables. (These basic operations, eg. g e t - t r e n d , ask, :=, etc., are
defined in this module.)

Since many rul:s may require evaluation of the same operation for
the same battery using the same data, there is a considerable
opportunity for inefficiency. To avoid this, each operation which
obi:ains new information, generates a 'lemma' which is then used by
the repeated calls without a need to repeat the 'proof'. Thus, for
example, a new information obtained by get - t r e n d (c h a r g e , l) will be
asserted as a new fact; next time the ge t - t r e n d (c h a r g e , l) is called,
thia fact is then simply retrieved rather then recomputed.

Ed !tor functions module.

This function provides the capabilities for modiflcation of the
internal knowledge representation. The editor functions currently
provided include:

show, delete, add, change, save, statistics, help,
print, quit.

On-line help module.

SIRE has an extensive on-line help available to it's user. The on-line
help describe and is accessible
via the help ,election in the first level menu. The capability of the
on-line help s further indicated in the following figure.

all of the major functions of SIRE,

IV - 16

help
J

SIRE online help

dmw delete add change stat is t ics help

X X X. X X X

Control module.

SIRE control module provides access to the functions of the editor.
This module calls the menu modules to display the menus, and
subsequently combines the user responses to determine which of the
editor functicns are to be activated by the editor function module. On
completion of user requests, the control module performs
maintenance operations on behalf of the rule module.

IV - 17

Conclusions.

The objectives of this project have been successfully met. The
SIRE subsystem has been successfully integrated with the NICBES
prototype, and will provide it's users with a system for display of the
knowledge base status, addition of new knowledge in the format of
SIRE/NICBES rules, and modification of these rules as the
dynamically evolving expertise may require.

In addition to the above, a rudimentary diagnosis explanation
facility has been implemented. It provides not only display of
conclusions, but also identification of rules which were instrumental
to reaching the conclusion. Although this explanation facility should
be further developed, it will already be of benefit by providing a
means to pillpoint the rules and to focus on the knowledge which
may need rxis ion.

All of these functions are now 'user-friendly'. Thus, the user of
NICBES no longer requires knowledge of programming in Prolog, nor
does he require knowledge of the internal structure of NICBES code.

As a by-product of this work, it has been ascertained that the
NICBES prototype code must be rewritten in order to function as a
useful product. This conclusion is inevitable when the sluggishness of
NICBES is compared with its current 'size parameters'. Thus, although
NICBES has only some 40 rules in its knowledge base, and refers to
only 12 orbits, it is already heavily i/o bound. The main reasons for
the frantic disk activities exhibited by NICBES, are due to the DOS
limitation of 640 KB for memory, the size of the Prolog system, and
the storage cost of recursive calls in Arity Prolog.

The slow-down due to the excessive disk activities is further
compounded by the battery performance trends and averages
calculations. For example, although only 12 orbits are taken into
account in calculation of a performance trend, such calculation takes
about 20 seconds. With five trends to be calculated, the user has to
wait for almost two minutes. Now for the crunch: if number of orbits
is increased to 1000, the calculations (as programmed now) of five
trends will take 3 hours!!

IV - 18

References .

Martin Marietta Corp. "Final report for NICBES", MCR-85-641, 1986

Martin Marietta Corp. "User manual for NICBES", MCR-86-673, 1986

Martin Marietta Corp. "Requirements specification for NKBES", MCR-
86-674, 1986

Martin Marietta Corp. "Program maintenance manual for NICBES",
MCR-86-675, 1986

The Arity/Prolog Programming Language, (Version 4), 1986

The Design Arity Screen Toolkit, 1986

0 Bykat, A. "User manual for SIRE", 1988

Bykat, A. "Expansion of NICBES capabilities", MSFC, NAGB-105, 1988

IV - 19

